Abstract

Herein, a series of covalent triazine framework/bismuth vanadate (CTF/BiVO4) heterojunction catalysts were prepared using the hydrothermal method. The mechanism of the CTF/BiVO4 heterojunction photocatalyst in the system was examined to provide a theoretical basis for constructing a high-efficiency photocatalysis composite system for removing organic pollutants from water. Compared with CTF and BiVO4 catalysts alone, composite materials have been shown to have significantly higher degradation efficiencies against organic pollutants in water. Moreover, the degradation effect was found to be optimal when the mass ratio of CTF to BiVO4 was 1:1 (1-CTF/BiVO4). On the basis of physicochemical characterization results, it was concluded that the effective construction of CTF/BiVO4 composite photocatalyst material systems and the formation of type II heterojunction structures between CTF and BiVO4 effectively promote the separation of photogenerated carriers and increase the interface charge transfer efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.