Abstract

Plant fiber-reinforced polylactic acid (PLA) composites are extensively utilized in eco-friendly packaging, sports equipment, and various other applications due to their environmental benefits and cost-effectiveness. However, PLA suffers from brittleness and poor toughness, which restricts its use in scenarios demanding high toughness. To expand the application range of plant fiber-reinforced PLA-based composites and enhance their poor toughness, this study employed a two-step process involving wheat straw fiber (WF) to improve the interfacial compatibility between WF and PLA. Additionally, four elastomeric materials—poly (butylene adipate-co-terephthalate) (PBAT), poly (butylene succinate) (PBS), polycaprolactone (PCL), and polyhydroxyalkanoate (PHA)—were incorporated to achieve a mutual reactive interface enhancement and elastomeric toughening. The results demonstrated that Fe3+/TsWF/PLA/PBS exhibited a tensile strength, elongation at break, and impact strength of 34.01 MPa, 14.23 %, and 16.2 kJ/m2, respectively. These values represented a 2.4 %, 86.7 %, and 119 % increase compared to the unmodified composites. Scanning electron microscopy analysis revealed no fiber exposure in the cross-section, indicating excellent interfacial compatibility. Furthermore, X-ray diffraction and differential scanning calorimetry tests confirmed improvements in the crystalline properties of the composites. This work introduces a novel approach for preparing fiber-reinforced PLA-based composites with exceptional toughness and strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.