Abstract

With the emergence of multidrug-resistant organisms, combining medicinal plants with synthetic or orthodox medicines against resistant bacteria becomes necessary. In this study, interactions between methanolic extract of Acacia mearnsii and eight antibiotics were investigated by agar diffusion and checkerboard assays. The minimum inhibitory concentrations (MICs) of all the antibiotics ranged between 0.020 and 500 μg/mL while that of the crude extract varied between 0.156 and 1.25 mg/mL. The agar diffusion assay showed that extract-kanamycin combination had zones of inhibition ≥20 ± 1.0 mm in all the bacteria tested (100%), followed by extract-chloramphenicol (90%) > extract-ciprofloxacin = extract-tetracycline (70%) > extract-amoxicillin (60%) > extract-nalidixic acid (50%) > extract-erythromycin (40%) > extract-metronidazole (20%). The checkerboard showed synergistic interaction (61.25%), additivity/indifference (23.75%) and antagonistic (15%) effects. The synergistic interaction was most expressed by combining the extract with tetracycline, metronidazole, amoxicillin, ciprofloxacin, chloramphenicol and nalidixic acid against E. coli (ATCC 25922), erythromycin, metronidazole, amoxicillin, chloramphenicol and kanamycin against S. aureus (ATCC 6538), erythromycin, tetracycline, amoxicillin, nalidixic acid and chloramphenicol against B. subtilis KZN, erythromycin, metronidazole and amoxicillin against E. faecalis KZN, erythromycin, tetracycline, nalidixic acid and chloramphenicol against K. pneumoniae (ATCC 10031), erythromycin, tetracycline, metronidazole and chloramphenicol against P. vulgaris (ATCC 6830), erythromycin, tetracycline, amoxicillin and chloramphenicol against S. sonnei (ATCC 29930), metronidazole, amoxicillin and chloramphenicol against E. faecalis (ATCC 29212) and ciprofloxacin and chloramphenicol against Proteus vulgaris KZN. The synergistic interactions indicated that the bactericidal potentials of the antibacterial agents were improved and combining natural products with antibiotic could be potential sources for resistance-modifying agents useful against infectious multi-drug resistant bacteria.

Highlights

  • Infectious diseases are important causes of morbidity and mortality [1,2,3]

  • The synergistic interaction was most expressed by combining the extract with tetracycline, metronidazole, amoxicillin, ciprofloxacin, chloramphenicol and nalidixic acid against E. coli (ATCC 25922), erythromycin, metronidazole, amoxicillin, chloramphenicol and kanamycin against S. aureus (ATCC 6538), erythromycin, tetracycline, amoxicillin, nalidixic acid and chloramphenicol against B. subtilis KZN, erythromycin, metronidazole and amoxicillin against E. faecalis KZN, erythromycin, tetracycline, nalidixic acid and chloramphenicol against K. pneumoniae (ATCC 10031), erythromycin, tetracycline, metronidazole and chloramphenicol against P. vulgaris (ATCC 6830), erythromycin, tetracycline, amoxicillin and chloramphenicol against S. sonnei (ATCC 29930), metronidazole, amoxicillin and chloramphenicol against E. faecalis (ATCC 29212) and ciprofloxacin and chloramphenicol against Proteus vulgaris KZN

  • S. sonnei (ATCC 29930) only, the bacterial inhibition zones produced by the methanolic extract ranged between 15 and 19 ± 1.0 mm, those of antibiotics ranged from 13 to 31 ± 1.0 mm while those of their combinations ranged between 13 and 29 ± 1.0 mm

Read more

Summary

Introduction

Infectious diseases are important causes of morbidity and mortality [1,2,3]. They remain the biggest killer of children and young adults as well as the second-leading cause of death worldwide [4,5]despite remarkable successes of antimicrobial drug generations of the third part of the last century.While host and pathogen interactions are complex and requires several effort to limit the spread of causal organisms [6], uncontained infections result in systemic inflammatory response syndrome that may progress into severe sepsis, septic shock, or mortality [7]. With the emergence of multidrug-resistant organisms, there are few or no treatment options for infections with certain microorganisms [12,13] as bacteria are resistant to 21 different antibiotics and each isolate is on average resistant to 7–8 antibiotics [14]. Under these circumstances where treatment becomes challenging, physicians have requested clinical laboratory to assess the adequacy of therapy [15,16,17], especially, when bactericidal antimicrobial agent therapy is considered necessary [17]

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.