Abstract

A novel flame-retarded epoxy resins system is prepared by copolymerizing diglycidyl ether of bisphenol A (EP) with tris(3-nitrophenyl) phosphine (NPPh3), 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO), and 4,4-diaminodiphenylmethane (DDM). The thermogravimetric curves suggest that there is an obvious synergistic effect between NPPh3 and DOPO. Flame-retardant properties of the cured products are evaluated using limited oxygen index (LOI) and vertical burning tests (UL-94). The results indicate that the flame retardancy of NPPh3/DOPO/EP thermosets is enhanced. 2%NPPh3/4%DOPO/EP achieves a LOI value of 33.8% and V-0 rating in UL-94 test. The thermal stability of the EP composites is detected by thermogravimetric analysis (TG) and differential scanning calorimetry. The results demonstrate that the thermal stability of NPPh3/DOPO cured epoxy resins displays an improvement in the high-temperature region and the glass transition temperature decreases slightly compared with pure EP. The pyrolytic gases are characterized using thermogravimetric analysis/infrared spectrometry (TG-FTIR) in an air atmosphere. The gaseous species produced by the flame-retarded EP composites are the same as those from EP. Additionally, the morphology and the structure of char residues are studied by scanning electron microscopy and Fourier transform infrared spectra (FTIR). The morphology of the residual char for flame-retarded EP composites shows a compact, smooth, and tight structure. These outstanding integrated properties will make EP composites attractive for practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.