Abstract

The unique properties of high entropy alloy (HEA) catalysts, particularly their severe lattice distortion and the synergistic effect of multiple components, endow them with exceptional multifunctional catalytic performance. Herein, it is revealed for the first time, that the ultrasmall PtRhNiFeCu HEA nanoparticles catalyst shows outstanding catalytic activity for both hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). The catalyst exhibits an impressively low overpotential of 13mV at 10mAcm-2, a Tafel slope of 29.6mVdec-1, and high mass activity of 7.6AmgPt -1 at -50mV in alkaline media, and long-term stability of at least 20h. Moreover, the catalyst also demonstrates effective catalytic activity for acidic ORR with a commendable performance of 1.23AmgPt -1, much exceeding the commercial Pt/C catalyst. Density functional theory (DFT) calculations unveil that the efficient electrocatalytic performance for HER and ORR can be primarily attributed to the synergistic effect between components tailors and optimizes the electronic structure of PtRhNiFeCu/C HEA, which not only enhances the HER activity through increasing water capture capability, decreasing energetic barrier for water dissociation, and optimizing hydrogen absorption but also initiates non-platinum active sites with high ORR activity, achieving the improved ORR performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.