Abstract

Graphene oxide (GO) nanosheets and zeolitic imidazole frameworks (ZIF-302) were synergistically integrated to glassy polysulfone (PSF) to fabricate mixed-matrix membranes (MMMs) to separate carbon dioxide from post-combustion flue gas stream. In order to optimize CO2 separation performance of composite membranes form dry and wet gases, both nanofillers in varying compositions were incorporated into PSF to prepare MMMs using solution-casting technique. The flexible MMMs rendered homogeneous dispersion of fillers, improved polymer–filler adhesion, and thermally stable structure. Gas sorption analyses along with dry and wet gas permeation experiments demonstrated improved CO2 permeability coupled with high CO2/N2 ideal selectivity of MMMs due to synergistic effect of nanofillers. The hybrid membrane containing 1 wt% GO and 30 wt% ZIF-302 nanofillers showed an optimum separation performance by providing a CO2 permeability of 13 Barrers with CO2/N2 ideal selectivity of 52. The permeation characteristics of hybrid membranes were found to be better than already existing membranes and were not affected by humid conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.