Abstract
Layered rare-earth metal oxides, harnessing the dual properties of oxides and two-dimensional layered materials, exhibit remarkable thermal stability and quantum confinement effects. Therefore, this work adopts the first-principles calculation combined with the Boltzmann transport theory to predict the thermoelectric properties of NdZnSbO compound. The coexistence of weak interlayer van der Waals interactions, robust intralayer ionic bonding, and partial covalent bonding leads to remarkable bonding heterogeneity, which engenders pronounced phonon scattering and imposes constraints on thermal transport along the out-of-plane direction. The weakened chemical bonds induced by the antibonding states, together with the rattling-like behavior of the Zn atom, culminate in the profound anharmonicity in the layered NdZnSbO compound. The weakening bond and heavy element contribute to the softness of phonon modes, which significantly diminishes the phonon group velocity. The redistribution-dominated four-phonon scattering process spans a large optical gap, which effectively reduces the lattice thermal conductivity. The NdZnSbO compound exhibits direct semiconductor characteristic with a bandgap of 0.73 eV by adopting the Heyd-Scuseria-Ernzerhof (HSE06) functional in combination with spin–orbit coupling (SOC) effect. The multi-valley feature of NdZnSbO compound augur favorably for band degeneracy, thus amplifying the power factor. Consequently, an optimal figure-of-merit (ZT) of 3.40 at 900 K is achieved for the n-type NdZnSbO compound. The present study delves deeply insights into the origins for the low thermal conductivity of NdZnSbO compound and proposes an optimization scheme to enhance overall thermoelectric performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.