Abstract

This paper investigates the high temperature resistance performance and mechanism of potassium-activated blended precursor geopolymer with silica fume. The failure morphology, volume, and mass loss, compressive strength deterioration, hydration production, and pore structure are measured and analyzed. The results show that introducing slag into fly ash-based geopolymer could greatly improve the 28 d compressive strength but reduce the thermal stability. In contrast, the partial substitution of fly ash by metakaolin contributes to excellent high temperature resistance with slightly enhanced 28 d compressive strength. After being exposed at 800 °C, the residual compressive strength of F7M3 remains at 37 MPa, almost 114% of the initial ambient-temperature strength. An appropriately enlarged silica fume content in geopolymer results in increased compressive strength and enhanced thermal stability. However, an excessive silica fume content is detrimental to the generation of alkali-aluminosilicate gels and ceramic-like phases and thus exacerbates the high temperature damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.