Abstract
Conventional protein kinase C (PKC) isoforms are abundant neuronal signaling proteins with important roles in regulating synaptic plasticity and other neuronal processes. Here, we investigate the role of ionotropic and metabotropic glutamate receptor (iGluR and mGluR, respectively) activation on the generation of Ca2+ and diacylglycerol (DAG) signals and the subsequent activation of the neuron-specific PKCgamma isoform in hippocampal neurons. By combining Ca2+ imaging with total internal reflection microscopy analysis of specific biosensors, we show that elevation of both Ca2+ and DAG is necessary for sustained translocation and activation of EGFP (enhanced green fluorescent protein)-PKCgamma. Both DAG production and PKCgamma translocation were localized processes, typically observed within discrete microdomains along the dendritic branches. Markedly, intermediate-strength NMDA receptor (NMDAR) activation or moderate electrical stimulation generated Ca2+ but no DAG signals, whereas mGluR activation generated DAG but no Ca2+ signals. Both receptors were needed for PKCgamma activation. This suggests that a coincidence detection process exists between iGluRs and mGluRs that relies on a molecular coincidence detection process based on the corequirement of Ca2+ and DAG for PKCgamma activation. Nevertheless, the requirement for costimulation with mGluRs could be overcome for maximal NMDAR stimulation through a direct production of DAG via activation of the Ca2+-sensitive PLCdelta (phospholipase Cdelta) isoform. In a second important exception, mGluRs were sufficient for PKCgamma activation in neurons in which Ca2+ stores were loaded by previous electrical activity. Together, the dual activation requirement for PKCgamma provides a plausible molecular interpretation for different synergistic contributions of mGluRs to long-term potentiation and other synaptic plasticity processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.