Abstract

Planar-type perovskite solar cells have attracted extensive attentions due to their simple architecture and manufacturing. However, an imperfect heterojunction at the electron-selective contact side with abundant detrimental defects and weak binding strength induces severe charge recombination and device instability during long-term operation, which seriously hinders the further development and application prospect. Herein, we demonstrate π-conjugated oxysalt as an efficient interfacial binder and defect passivator for the stabilization of SnO2/perovskite interface. Theoretical modeling and experimental studies confirm the synergistic effect of ionic bonding and π-cation interaction in reducing defect density and mitigating charge recombination. An impressive power conversion efficiency up to 24.05%, a fill factor as high as 84.52%, and negligible hysteresis can be achieved in optimized solar cell. π-conjugated oxysalt interlayer can also improve device stability by offering a robust interface. Our work highlights the significance of chemical bonding engineering in constructing a high-quality heterojunction for efficient and stable perovskite solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.