Abstract

Structural supercapacitor is a promising solution for reducing the overall weight of electric vehicles. To maximum the energy storage capacity of a load-carrying structure, we present a technique to create carbon fibre (CF) electrodes modified with vertical graphene (VG) and manganese dioxide (MnO2). The results show that the hybridisation of VG and MnO2 generates a significant synergistic effect in increasing the areal capacitance of electrode. This synergistic effect is attributed to the dual effects of VG in increasing effective surface area and the electrical conductivity, which enable a better distribution of MnO2 as well as a highly conductive network. A structural supercapacitor, based on the CF/VG/MnO2 hybrid electrode and a polymer electrolyte, exhibits an areal capacitance of 30.7 mF/cm2, energy density of 12.2 mW h/kg, and power density of 2210.3 mW/kg. Moreover, mechanical characterisations demonstrate a tensile strength of 86 MPa and a flexural strength of 32 MPa for this structural supercapacitor. The high electrical energy density and mechanical properties of this supercapacitor pave a way of developing advanced carbon fibre multifunctional composites with excellent structural performance and energy storage capability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.