Abstract

Tuning the components and multiple activator sites possesses profound significances on the regulation for corresponding luminescent properties of target phosphors. However, it is still challenging to realize full-visible emission via single activator in a single phase owing to the matrix diversity and uncertainty for multi-site occupation. Herein, we developed a family of whitlockite-type solid-solution phosphors Ca8MgGa1-yLay(PO4)7: Eu2+(y = 0–1) via inducing the La3+ ions into Ca8MgGa(PO4)7:Eu2+. The local environments of Eu2+ ions and corresponding tunable photoluminescent properties, decay times and thermal stability are revealed systematically in detail. Specially, the excitation and emission spectra of Ca8MgGa1-yLay(PO4)7: Eu2+ are broadened gradually, finally towards a full-visible emission with 152 nm bandwidth spectrum for the phosphor Ca8MgLa(PO4)7: Eu2+. WLED with a high color rendering index (CRI = 95) and low color temperature (CCT = 3764 K) was fabricated based on the full-visible emission Ca8MgGa0.2La0.8(PO4)7: 0.08Eu2+ phosphors under a 365 nm chip, indicating the prominent potentials for high-color-rendering WLEDs. These results in current work provide new ideas for synergetic manipulation of components and multiple activator sites towards a full-visible emission in single-phase applied for white lighting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.