Abstract
High Li+ transference number electrolytes have long been understood to provide attractive candidates for realizing uniform deposition of Li+. However, such electrolytes with immobilized anions would result in incomplete solid electrolyte interphase (SEI) formation on the Li anode because it suffers from the absence of appropriate inorganic components entirely derived from anions decomposition. Herein, a boron‐rich hexagonal polymer structured all‐solid‐state polymer electrolyte (BSPE+10% LiBOB) with regulated intermolecular interaction is proposed to trade off a high Li+ transference number against stable SEI properties. The Li+ transference number of the as‐prepared electrolyte is increased from 0.23 to 0.83 owing to the boron‐rich cross‐linker (BC) addition. More intriguingly, for the first time, the experiments combined with theoretical calculation results reveal that BOB− anions have stronger interaction with B atoms in polymer chain than TFSI−, which significantly induce the TFSI− decomposition and consequently increase the amount of LiF and Li3N in the SEI layer. Eventually, a LiFePO4|BSPE+10% LiBOB|Li cell retains 96.7% after 400 cycles while the cell without BC‐resisted electrolyte only retains 40.8%. BSPE+10% LiBOB also facilitates stable electrochemical cycling of solid‐state Li‐S cells. This study blazes a new trail in controlling the Li+ transport ability and SEI properties, synergistically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.