Abstract

A synchrotron microbeam high-angular resolution diffraction setup based on a phase zone plate and a perfect Si(004) analyzer crystal was introduced to generate an x-ray microbeam with a lateral size of 0.24 µm and an angular resolution of 2 arcsec. The microbeam high angular resolution x-ray diffraction was applied to study InGaAlAs-based multiple quantum well (MQW) ridge-waveguide arrays produced by metal–organic vapour-phase epitaxy in a selective area growth regime with a central waveguide width varying from 1.6 to 60 µm. The analysis of the period T and the strain S in MQW ridge structures determined from the high-resolution diffraction data is presented. It was found that the MQW period is uniform across the ridge within the error bar of ΔT = ± 0.25 nm. Within the waveguide array, the MQW period and strain can be adequately described by a gas-phase diffusion model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.