Abstract

Catalytic depolymerization of lignin to high-value chemicals is crucial to the comprehensive achievement of sustainable and economic concerns. Herein, we propose a green, practical, and economic strategy for the synchronous catalytic depolymerization of lignin based on in situ conversion of geopolymer precursor to hierarchical zeolite, using water as a mild solvent and without external H2, additives, co-catalysts or co-solvents. The in situ-converted hierarchical analcime (ANA) zeolite outperformed previously reported representative catalysts, such as PTA/MCM-41 and CuAlMgOx in lignin depolymerization with a high monophenol yield (95.61 ± 7.89 mg/g). The synergetic effect of the micro-mesoporous structure and enhanced acidic sites of the ANA played a vital role in regulating the monomer composition and the yield of monophenols. The obtained monophenols are rich in -OH groups and can be utilized as a substitute for petroleum resources, such as ethylene glycol or glycerin for the synthesis of bio-polyurethane foams (bio-PUFs). This work expands the scope of using biomass in a sustainable manner to make high-value chemicals and biomaterials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.