Abstract

BackgroundElectroencephalography (EEG) can capture the cortical response evoked by transcranial magnetic stimulation (TMS). The TMS pulse provokes a large artefact, which obscures the cortical response in the first milliseconds after TMS. Removing this artefact remains a challenge.MethodsWe delivered monophasic and biphasic TMS to a melon as head phantom and to four healthy participants and recorded the pulse artefact at 5 kHz with a TMS-compatible EEG system. Pulse delivery was either synchronized or non-synchronized to the clock of the EEG recording system. The effects of synchronization were tested at 10 and 20 kHz using the head phantom. We also tested the effect of a soft sheet placed between the stimulation coil and recording electrodes in both human and melon.Results & conclusionSynchronizing TMS and data acquisition markedly reduced trial-to-trial variability of the pulse artefact in recordings from the phantom or from the scalp. Reduced trial-to-trial variability was also observed at high sampling frequencies. The use of a soft sheet reduced the variability in recordings on the head phantom, but not in human participants. Effective reduction of the trial-to-trial variability renders it possible to create an artefact template for off-line filtering. Template-based subtraction of the artefact from the EEG signals is a prerequisite to effectively recover the immediate physiological response in the stimulated cortex and inter-connected areas.

Highlights

  • Measuring electroencephalographic (EEG) responses to transcranial magnetic stimulation (TMS) provides unique possibilities to study the physiological response of the human cortex in-vivo

  • We showed that the experimental setting strongly influence trial-to-trial variability of the pulse artefact in TMS-EEG experiments

  • Confirming our hypothesis, the lack of synchronized timing of TMS pulse delivery and EEG signal sampling contributes to the trial-to-trial variability (Fig 5, upper panel)

Read more

Summary

Background

Electroencephalography (EEG) can capture the cortical response evoked by transcranial magnetic stimulation (TMS). The TMS pulse provokes a large artefact, which obscures the cortical response in the first milliseconds after TMS.

Methods
Results & conclusion
Introduction
Results
Discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.