Abstract

Cell‐cycle effects in phytoplankton have both general and specific influences over a variety of cellular processes. Understanding these effects requires that the majority of cells in a culture are progressing through the same cell‐cycle stage, which requires synchronous growth. We report the development of a silicon starvation–recovery synchrony for the first diatom with a sequenced genome, Thalassiosira pseudonana Hasle et Heimdale, which provides several novel insights into the process of cell‐wall formation. After 24 h of silicate starvation, flow cytometry measurements indicated that 80% of the cells were arrested in the early G1 phase of the cell cycle and then upon silicate replenishment progressed synchronously through the cycle. An early G1‐arrest point was not previously documented in diatoms. After silicate replenishment, girdle‐band synthesis was confined to a particular period in G1, and cells did not lengthen in accordance with each girdle band added, which has implications related to cell growth and separation processes in diatoms. Measurements of silicic acid uptake, intracellular pools, and silica incorporation into the cell wall, coupled with fluorescence visualization of newly synthesized cell‐wall structures, provide the first direct measurements of silica amounts in individual girdle bands and valves in a diatom. Fluorescence imaging indicated why valves in T. pseudonana do not have to reduce in size with each generation and enabled visualization of intermediates in structure formation. The development of a synchrony procedure for T. pseudonana enables correlation of cellular events with the cell cycle, which should facilitate the use of genomic information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.