Abstract

This paper considers the drive-response synchronization of memristive neural networks (MNNs) with unknown parameters, where the unbounded discrete and bounded distributed time-varying delays are involved. Aiming at the unknown parameters of MNNs, the updating law of weight in response system and the gain of adaptive controller are proposed to realize the synchronization of delayed MNNs. In view of the limited communication and bandwidth, the event-triggered mechanism is introduced to adaptive control, which not only decreases the times of controller update and the amount of data sending out but also enables synchronization when parameters of MNNs are unknown. In addition, a relative threshold strategy, which is relative to fixed threshold strategy, is proposed to increase the inter-execution intervals and to improve the control effect. When the parameters of MNNs are known, the algebraic criteria of synchronization are established via event-triggered state feedback control by exploiting inequality techniques and calculus theorems. Finally, one simulation is presented to validate the effectiveness of the proposed results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.