Abstract
A major challenge faced in the bone materials of weight-bearing without internal fixture support is the mismatch of material degradation and new bone formation, leading to weakening or even failure of the overall bony structure. This study demonstrated in the rat femur model that calcium sulphate cement degradation and new bone formation could be better synchronized by external mechanical force. An ascending force in line with calcium sulphate cement degradation could achieve bone healing in 37 days with ultimate load to failure of 87.00 ± 7.30 N, similar to that of intact femur (80.46 ± 2.79 N, p = 0.369). In contrast, the healing process under either a constant force or no force illustrated significant residual defect volumes of 1.47 ± 0.44 and 4.08 ± 0.89 mm(3) (p < 0.001), and weaker ultimate loads to failure of 69.56 ± 4.74 and 59.17 ± 7.48 N, respectively (p < 0.001). Our results suggest that the mechanical regulation approach deserves further investigation and may potentially offer a clinical strategy to improve synchronization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.