Abstract

Clinical and animal experiments indicated that gut-derived endotoxin and imbalanced intestinal microbiota contribute to the pathogenesis of alcoholic liver disease (ALD). In this study, we investigated whether synbiotic supplementation could improve ALD in rats by altering the intestinal microbial composition and improving the intestinal integrity. Male Wistar rats were divided into four groups according to plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities and subjected to either a normal liquid diet (C), a normal liquid diet with synbiotic supplementation (C + S), an ethanol liquid diet (E), or an ethanol liquid diet with synbiotic supplementation (E + S) for 12 weeks. Results revealed that the ethanol-fed group showed increases in plasma AST and ALT activities, the endotoxin level, the hepatic triglyceride (TG) level, and hepatic tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 levels, and a decrease in the hepatic IL-10 level. Ethanol-feeding also contributed to increased intestinal permeability and decreased fecal bifidobacteria and lactobacilli amounts. However, synbiotic supplementation effectively attenuated the plasma endotoxin, hepatic TG and TNF-α levels, and increased the hepatic IL-10 level. Furthermore, synbiotic supplementation protected the rats against ethanol-induced hyperpermeability of the intestine, and significantly increased amounts of bifidobacteria and lactobacilli in the feces. This study demonstrated that synbiotics possess a novel hepatoprotective function by improving the intestinal permeability and microbiota in rats with ethanol-induced liver injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.