Abstract

Presynaptic terminals maintain neurotransmitter release during repeated rounds of stimulation using local recycling of synaptic vesicles (SV). During each SV cycle, protein complex assembly and disassembly results in accumulation of inactive (unfolded) protein intermediates that may render synaptic terminals vulnerable to activity-dependent degeneration. SV trafficking is affected in many neurodegenerative conditions including Alzheimer' and Parkinson's disease (PD) suggesting that alteration of this process might be an important aspect of disease pathogenesis. This article reviews our current understanding for a role of causative PD genes in the SV cycle and speculates on the potential role of aberrant SV trafficking in the neurodegenerative cascade of PD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.