Abstract

Synaptic dysfunction and neuronal excitatory/inhibitory imbalance have been implicated in Alzheimer's disease (AD) pathogenesis. Although intensive studies have been focused on the excitatory synaptic system, much less is known concerning the mechanisms mediating inhibitory synaptic dysfunction in AD. We reported previously that protocadherin-γC5 (Pcdh-γC5), a member of clustered Pcdh-γ subfamily of cadherin-type synaptic adhesion proteins, functions to promote GABAergic synaptic transmission. We reveal here that Pcdh-γC5 is enriched in vesicular GABA transporter-positive synaptic puncta and its expression levels are increased in neuronal hyperexcitation conditions, upon β-amyloid (Aβ) treatment, and in amyloid precursor protein (APP)/presenilin-1 (PS1)-transgenic mice of both sexes. This is associated with elevated levels of GABAergic proteins and enhanced synaptic inhibition. Genetic knock-down experiments showed that Pcdh-γC5 modulates spontaneous synaptic currents and Aβ-induced synaptic alterations directly. Our results support a model in which Pcdh-γC5 senses neuronal hyperexcitation to augment GABAergic inhibition. This adaptive mechanism may be dysregulated under chronic excitation conditions such as AD, leading to aberrant Pcdh-γC5 expression and associated synaptic dysfunction.SIGNIFICANCE STATEMENT Synaptic dysfunction is causal for Alzheimer's disease (AD). Here, we reveal a novel pathway that contributes GABAergic synaptic dysfunction in AD mediated by protocadherin-γC5. Our study not only identifies a new mechanism mediating excitatory/inhibitory balance in AD, but may also offer a new target for potential therapeutic intervention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.