Abstract

The vertebrate retina contains two ultrastructurally distinct types of vesicle-containing synapses: conventional synapses, made predominantly by amacrine cells, and ribbon synapses, formed by photoreceptor and bipolar cells. To identify molecular differences between these synapse types, we have compared the distribution of the synapsins, a family of nerve terminal phosphoproteins, with that of synaptophysin (p38) and SV2, two intrinsic membrane proteins of synaptic vesicles. We report an absence of synapsin I and II immunoreactivity from all ribbon-containing nerve terminals. These include terminals of rod cells in developing and adult rat retina, rod and cone cells in monkey and salamander retinas, and rat bipolar cells. Furthermore, we show that synapsins I and II are differentially distributed among conventional synapses of amacrine cells. The absence of the synapsins from ribbon synapses suggests that vesicle clustering and mobilization in these terminals differ from that in conventional synapses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.