Abstract

Exceptional outcrops recently exposed in the Koniambo massif allow the study of the serpentine sole of the peridotite nappe of New Caledonia (southwest Pacific Ocean). Many magnesite veins are observed, with characteristics indicating that they were emplaced during pervasive top-to-the-southwest shear deformation. The oxygen isotope composition of magnesite is homogeneous (27.4‰ < δ18O < 29.7‰), while its carbon isotope composition varies widely (−16.7‰ < δ13C < −8.5‰). These new data document an origin of magnesite from meteoric fluids. Laterization on top of the peridotite nappe and carbonation along the sole appear to represent complementary records of meteoric water infiltration. Based on the syn-kinematic character of magnesite veins, we propose that syn-laterization tectonic activity has enhanced water infiltration, favoring the exportation of leached elements like Mg, which has led to widespread carbonation along the serpentine sole. This calls for renewed examination of other magnesite-bearing ophiolites worldwide in order to establish whether active tectonics is commonly a major agent for carbonation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.