Abstract
In the Sharpless asymmetric epoxidation of chiral secondary allylic alcohols, one substrate enantiomer is predominantly converted to the anti‐epoxy alcohol. We herein report the first highly syn‐selective epoxidation of terminal allylic alcohols using a titanium salalen complex as catalyst, at room temperature, and aqueous hydrogen peroxide as oxidant. With enantiopure terminal allylic alcohols as substrates, the epoxy alcohols were obtained with up to 98 % yield and up to >99 : 1 dr (syn). Catalyst loadings as low as 1 mol % can be applied without eroding the syn‐diastereoselectivity. Modification of the allylic alcohol to an ether does not affect the diastereoselectivity either [>99 : 1 dr (syn)]. Inverting the catalyst configuration leads to the anti‐product, albeit at lower dr (ca. 20 : 1). The synthetic potential is demonstrated by a short, gram‐scale preparation of a tetrahydrofuran building block with three stereocenters, involving two titanium salalen catalyzed epoxidation steps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.