Abstract
Let M be a Kähler surface and Σ be a closed symplectic surface which is smoothly immersed in M . Let α be the Kähler angle of Σ in M . We first deduce the Euler–Lagrange equation of the functional L = \int_Σ \frac 1 {\cos α} dµ in the class of symplectic surfaces. It is \cos^3 αH = (J(J∇ \cos α)^⊤)^⊥ , where H is the mean curvature vector of Σ in M , and J is the complex structure compatible with the Kähler form ω in M ; it is an elliptic equation. We call a surface satisfying a this equation a symplectic critical surface. We show that, if M is a Kähler–Einstein surface with a nonnegative scalar curvature, each symplectic critical surface is holomorphic. We also study the topological properties of symplectic critical surfaces. By our formula and Webster’s formula, we deduce that the Kähler angle of a compact symplectic critical surface is constant, which is not true a for noncompact symplectic critical surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.