Abstract
We address the problem of symmetry reduction of optimal control problems under the action of a finite group from a measure relaxation viewpoint. We propose a method based on the moment-SOS (Sum of Squares) aka Lasserre hierarchy which allows one to significantly reduce the computation time and memory requirements compared to the case without symmetry reduction. We show that the recovery of optimal trajectories boils down to solving a symmetric parametric polynomial system. Then we illustrate our method on the symmetric integrator and the time-optimal inversion of qubits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ESAIM: Control, Optimisation and Calculus of Variations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.