Abstract

AbstractBy modifying the entangled multi‐degrees of freedom of transition‐metal oxides, interlayer coupling usually produces interfacial phases with unusual functionalities. Herein, a symmetry‐mismatch‐driven interfacial phase transition from paramagnetic to ferromagnetic state is reported. By constructing superlattices using CaRuO3 and SrTiO3, two oxides with different oxygen octahedron networks, the tilting/rotation of oxygen octahedra near interface is tuned dramatically, causing an angle increase from ≈150° to ≈165° for the RuORu bond. This in turn drives the interfacial layer of CaRuO3, ≈3 unit cells in thickness, from paramagnetic into ferromagnetic state. The ferromagnetic order is robust, showing the highest Curie temperature of ≈120 K and the largest saturation magnetization of ≈0.7 µB per formula unit. Density functional theory calculations show that the reduced tilting/rotation of RuO6 octahedra favors an itinerant ferromagnetic ground state. This work demonstrates an effective phase tuning by coupled octahedral rotations, offering a new approach to explore emergent materials with desired functionalities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.