Abstract

We introduce a combination of coherent states as variational test functions for the atomic and radiation sectors to describe a system of Na three-level atoms interacting with a one-mode quantised electromagnetic field, with and without the rotating wave approximation, which preserves the symmetry presented by the Hamiltonian. These provide us with the possibility of finding analytical solutions for the ground and first excited states. We study the properties of these solutions for the V-configuration in the double resonance condition, and calculate the expectation values of the number of photons, the atomic populations, the total number of excitations, and their corresponding fluctuations. We also calculate the photon number distribution and the linear entropy of the reduced density matrix to estimate the entanglement between matter and radiation. For the first time, we exhibit analytical expressions for all of these quantities, as well as an analytical description for the phase diagram in parameter space, which distinguishes the normal and collective regions, and which gives us all the quantum phase transitions of the ground state from one region to the other as we vary the interaction parameters (the matter-field coupling constants) of the model, in functional form.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.