Abstract
Recent research by the authors shows that bends in plates can act as features that can concentrate and guide ultrasonic energy along their axis. At low frequencies, two feature-guided modes are identified when the bent plate is subjected to ‘in-plane’ or axial excitation applied uniformly along a through-thickness line bisecting the bent edge. Of these, the slower mode has properties similar to the A0 (fundamental antisymmetric) Lamb mode in flat plates. This paper focuses on the faster bend-guided mode that is similar to the S0 (fundamental symmetric) Lamb mode in flat plates. Using 3D finite element (FE) simulation validated with experiments, this mode is shown to be more strongly generated in smaller angle bends. Features of the mode including velocity, attenuation and modal structure are considered in detailed studies. Results are discussed in light of simple modal studies using the Semi Analytical Finite Element (SAFE) method, suggesting a relationship of bend-guided waves to modes of curved bars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.