Abstract

Many sleep centres try to perform a reduced portable test in order to decrease the number of overnight polysomnographies that are expensive, time-consuming, and disturbing. With some limitations, heart rate variability (HRV) has been useful in this task. The aim of this investigation was to evaluate if inclusion of symbolic dynamics variables to a logistic regression model integrating clinical and physical variables, can improve the detection of subjects for further polysomnographies. To our knowledge, this is the first contribution that innovates in that strategy. A group of 133 patients has been referred to the sleep center for suspected sleep apnea. Clinical assessment of the patients consisted of a sleep related questionnaire and a physical examination. The clinical variables related to apnea and selected in the statistical model were age (p < 10(-3)), neck circumference (p < 10(-3)), score on a questionnaire scale intended to quantify daytime sleepiness (p < 10(-3)), and intensity of snoring (p < 10(-3)). The validation of this model demonstrated an increase in classification performance when a variable based on non-linear dynamics of HRV (p < 0.01) was used additionally to the other variables. For diagnostic rule based only on clinical and physical variables, the corresponding area under the receiver operating characteristic (ROC) curve was 0.907 (95% confidence interval (CI) = 0.848, 0.967), (sensitivity 87.10% and specificity 80%). For the model including the average of a symbolic dynamic variable, the area under the ROC curve was increased to 0.941 (95% = 0.897, 0.985), (sensitivity 88.71% and specificity 82.86%). In conclusion, symbolic dynamics, coupled with significant clinical and physical variables can help to prioritize polysomnographies in patients with a high probability of apnea. In addition, the processing of the HRV is a well established low cost and robust technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.