Abstract
In this paper, an injection from the partition lattice Πn to a zero-dimensional affine algebra over the finite field F2 is constructed. We study some interesting properties of the injection and present two direct sum decompositions of the zero-dimensional affine algebra. Based upon these, some properties of Πn are revealed in an algebraic manner, for instance, the rank-generating function and characteristic polynomial of Πn can be derived using the symbolic method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.