Abstract

Channel estimation and symbol detection in multiple-input and multiple-output (MIMO)-orthogonal frequency division multiplexing (OFDM) systems are essential tasks. Although the maximum likelihood (ML) detector reveals excellent performance for symbol detection, the computational complexity of this algorithm is extremely high in systems with more transmitter antennas and high-order constellation size. In this paper, we propose the differential evolution (DE) algorithm in order to reduce the search space of the ML detector and the computational complexity of symbol detection in MIMO-OFDM systems. The DE algorithm is also compared to some heuristic approaches, such as the genetic algorithm and particle swarm optimization. According to the simulation results, the DE has the advantage of significantly less complexity and is closer to the optimal solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.