Abstract
The learning ability of neural networks (NNs) enables them to solve time series prediction problems. Off-line training can be applied to design the structure and weights of NNs when sufficient training data are available. However, this may be inadequate for applications that operate in real time, possess limited memory size, or require online adaptation. Furthermore, the structural design of NNs (i.e., the number of hidden neurons and connected topology) is crucial. This paper presents a novel algorithm, called the symbiotic structure learning algorithm (SSLA), to enhance a feedforward neural-network-aided grey model (FNAGM) for real-time prediction problems. Through symbiotic evolution, the SSLA evolves neurons that cooperate well with each other, and constructs NNs from the neurons with hyperbolic tangent and linear activation functions. During construction, the hidden neurons with the linear activation function can be simplified to a few direct connections from the inputs to the output neuron, leading to a compact network topology. The NNs share the fitness value with participating neurons, which are further evolved through neuron crossover and mutation. The proposed SSLA was evaluated through three real-time prediction problems. Experimental results showed that the SSLA-derived FNAGM possesses a partially connected NN with few hidden neurons and a compact topology. The evolved FNAGM outperforms other methods in prediction accuracy and continuously adapts the NN to the dynamic changes of the time series for real-time applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.