Abstract
AbstractIn addition to g = 2.00 signals seen frequently in EPR spectra of SWNT, signals at g = 2.07 of SWNT prepared by CVD were detected, exhibiting a Pauli susceptibility temperature dependence. This Pauli magnetism in combination with the large g shift is taken as evidence that these signals originate from itinerant electrons of metallic nanotubes. At temperatures below 150 K, a dominant narrow signal develops at g = 2.00. By applying multifrequency EPR up to 319 GHz, its inhomogeneous nature was confirmed. This signal is assigned to defects of the carbon network of the tubes.Comparing room temperature EPR spectra of CVD and arc‐grown SWNT, we found a much lower concentration of metallic tubes in arc material. No g = 2.07 signals of itinerant spins could be observed, which might be also caused by the high amount of residing catalyst. A drastic increase in nonresonant microwave absorption is observed below 10 K for both types of samples, if a threshold microwave power level is passed. In the same temperature range a drop in EPR intensity is also detected. These observations are taken as evidence for a transition into a superconducting phase of part of the sample. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.