Abstract

Metavalent bonding is crucial for the determination of phase transition and improvement of device performance in phase-change materials, which are attracting interest for use in memory devices. Although monitoring dielectric and phononic parameters provides a direct measure of the metavalent bonding, the control of phase-change phenomena and metavalent bonding in the dynamical regime has yet to be demonstrated. This study reports the photoenhanced metavalent bonding and resulting hidden metallic crystalline state of Ti-doped Sb2Te3, a representative phase-change material with ultralong sustainability. Using ultrafast terahertz spectroscopy, Ti0.4Sb2Te3 was discovered to possess ultralong pump-probe dynamics, which is retained over hundreds of picoseconds, unlike the short-lived state of undoped Sb2Te3. Moreover, for Ti0.4Sb2Te3 during the long-lived transmission change, the infrared-active phonon is highly softened, even more than the amount of a thermal phonon shift, indicating the photoenhancement of lattice anharmonicity. Such a long-lived relaxation implies photoinduced transition into a crystalline state of ultrastrong metavalent bonding in Ti0.4Sb2Te3, on the basis of comparisons of the dynamical dielectric constant and temporal phonon shift. Our results show the realization of photoengineering of phase-change materials by tuning electron sharing or transferring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.