Abstract
One-dimensional (1D) memristive networks are the simplest type of memristive networks one can imagine. Yet, despite their morphological simplicity, such networks represent an important class of memory networks characterized by the strongest interaction among the network components. This chapter reviews several important dynamical features of 1D memristive networks composed of realistic threshold-type memristive systems. First of all, the accelerated and decelerated switching regimes of memristive systems are introduced and exemplified. Secondly, the phenomenon of switching synchronization is presented. Finally, it is shown that metastable transmission lines composed of metastable memristive circuits can be used to transfer the information from one space location to another. Here, the information transfer occurs in the form of a switching front propagating along the line resembling a kink in, say, classical \(\phi ^4\) field theory model. Importantly, such memristive kinks can also be used for information processing purposes. This chapter thus reveals the triad of memristive systems functionalities in their 1D networks: information processing, storage and transfer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.