Abstract

Novozym 435-catalyzed ring-opening of a range of omega-methylated lactones demonstrates fascinating differences in rate of reaction and enantioselectivity. A switch from S- to R-selectivity was observed upon going from small (ring sizes <or=7) to large lactones (ring sizes >or=8). This was attributed to the transition from a cisoid to a transoid conformational preference of the ester bond on going from small to large lactones. The S-selectivity of the ring-opening of the small, cisoid lactones was low to moderate, while the R-selectivity of the ring-opening of the large transoid lactones was surprisingly high. The S-selectivity of the ring-opening of the small, cisoid lactones combined with the established R-selectivity of the transesterification of (aliphatic) secondary alcohols prevented polymerization from taking place. Ring-opening of the large, transoid lactones was R-selective with high enantioselectivity. As a result, these lactones could be polymerized, without exception, by straightforward kinetic resolution polymerization, yielding the enantiopure R-polyester with excellent enantiomeric excess (>99%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.