Abstract
This paper presents a study of the Switched Reluctance Generator dynamics when connected to a three-phase AC power grid. A mathematical model that includes magnetic saturation is used to represent the reluctance generator, which is driven by an asymmetric half bridge converter. Output generated voltage is smoothed with a shunt capacitor leading to a DC link voltage. This voltage is regulated using a PI compensator that governs the magnetizing angle of the generator phases. It is shown that introducing a freewheeling stage between the magnetizing and the demagnetizing states of each phase, allows for a better usage of mechanical power in the electromechanical conversion process. Injection of active power in the grid is performed by two PI compensators that determine the modulation indexes of each of the sinusoidal PWM modulators that drive the three phases of the converter. The complete system is simulated and the results are shown and discussed. The feasibility of the proposed strategy is demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.