Abstract

This study experimentally demonstrates a switchable single-double frequency spacing multi-wavelength Brillouin Raman fiber laser (MW-BRFL). The switching functionality was assisted by a micro air cavity (MAC) that was constructed by lateral misalignment of two cleaved fiber facets. Experimental results indicated that the frequency spacing of the generated channels could be switched via adjusting the MAC lateral misalignment. The laser performance was evaluated by fixing the peak power flatness to 1.5 dB. For Raman pump power of 800 mW, as many as 503 channels (39.72 nm bandwidth) with single frequency spacing of 0.079 nm were obtained when the lateral misalignment was set at 0 µm. On the other hand, with MAC misalignment of 25 µm, the laser produced 235 channels (37.03 nm bandwidth) with double frequency spacing of 0.158 nm. The peak power discrepancy between the odd and even channels was 20 dB, indicating high suppression of double-frequency spacing laser. In comparison to other switchable MW-BRFLs, this proposed configuration exhibited significant improvements with respect to channel bandwidth, flatness and suppression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.