Abstract

Numerical and experimental investigations of swirling pneumatic conveying dryer are performed. In the numerical study, the Eulerian–Lagrangian model is used to simulate the two-phases. The gas phase is simulated based on Reynolds Averaged Navier–Stokes equations (RANS) employing four turbulence models, namely: standard k–e model, RNG-based k–e model, extended k–e model and low-Reynolds number k–e model. Meanwhile 3-dimensional particle tracking procedure is used for the solid phase. The model takes into account the lift and drag forces and the effect of particle rotation as well as the particles dispersion by turbulence effect. The effects of inter-particles collisions and turbulence modulation by the solid particles, i.e. four-way coupling, are also included in the model. The experimental study is carried out on a pilot scale vertical pneumatic transport system. The swirl is imparted to the flow by axially rotating pipe of the same diameter as the drying pipe. Crushed limestone of different sizes is used to represent the solid phase. Measurements of pressure and temperature distributions along the dryer are performed at different inlet conditions. Comparisons between present model predictions and experimental results show a good agreement. The results indicate that the RNG-based k–e model gives better results compared with other tested turbulence models. In addition, it is found that the pressure drop of swirling flow is higher than that of non-swirling one and the swirl enhances the drying process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.