Abstract

The dynamics of red blood cells (RBCs) in simple shear flow was studied using a theoretical approach based on three variables: a shape parameter, the inclination angle theta, and phase angle phi of the membrane rotation. At high shear rate and low viscosity contrast of internal fluid, RBCs exhibit tank-treading motion, where phi rotates with swinging oscillation of shape and theta . At low shear rate, tumbling motion occurs and theta rotates. In the middle region between these two phases, it is found that synchronized rotation of phi and theta with integer ratios of the frequencies occurs in addition to intermittent rotation. These dynamics are robust to the modification of the potential of the RBC shape and membrane rotation. Our results agree well with recent experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.