Abstract
Lidar-based 3D Detection is one of the significant components of Autonomous Driving. However, current methods over-focus on improving the performance of 3D Lidar perception, which causes the architecture of networks becoming complicated and hard to deploy. Thus, the methods are difficult to apply in Autonomous Driving for real-time processing. In this paper, we propose a high-efficiency network, SwiftPillars, which includes Swift Pillar Encoder (SPE) and Multi-scale Aggregation Decoder (MAD). The SPE is constructed by a concise Dual-attention Module with lightweight operators. The Dual-attention Module utilizes feature pooling, matrix multiplication, etc. to speed up point-wise and channel-wise attention extraction and fusion. The MAD interconnects multiple scale features extracted by SPE with minimal computational cost to leverage performance. In our experiments, our proposal accomplishes 61.3% NDS and 53.2% mAP in nuScenes dataset. In addition, we evaluate inference time on several platforms (P4, T4, A2, MLU370, RTX3080), where SwiftPillars achieves up to 13.3ms (75FPS) on NVIDIA Tesla T4. Compared with PointPillars, SwiftPillars is on average 26.58% faster in inference speed with equivalent GPUs and a higher mAP of approximately 3.2% in the nuScenes dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.