Abstract

Thin films of a typical glassy polymer in alcohol nonsolvents were structurally characterized by specular neutron reflectivity (NR) and were found to be discernibly swollen. The extent of penetration by the nonsolvent was determined by the chain length of the alcohol. Treating this situation as one of a macroscopic phase separation, the interaction χ parameters for the polymer and nonsolvents combinations were extracted. This observation leads us to investigate the factors that control the nonsolvent/polymer interface, being an unusual example of a liquid/liquid interface. The fractional amount of nonsolvents at the substrate interface was higher than that in the internal region of the film. This segregation of a component in a phase-separated domain was explained in terms of an entropic factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.