Abstract

ABSTRACT 3C 396 is a composite supernova remnant (SNR), consisting of a central pulsar wind nebula (PWN) and a bright shell in the west, which is known to be interacting with molecular clouds (MCs). We present a study of X-ray emission from the shell and the PWN of the SNR 3C 396 using archival Suzaku data. The spectrum of the SNR shell is clearly thermal, without a signature of a non-thermal component. The abundances of Al and Ca from the shell are slightly enhanced, which indicates the presence of metal-enriched supernova ejecta. The PWN spectra are well described by a power-law model with a photon index of ∼1.97 and a thermal component with an electron temperature of ∼0.93 keV. The analysis of about 11 yr of Fermi data revealed an 18σ detection of gamma-ray emission from the location overlapping with the position of 3C 396 / 4FGL J1903.8+0531. The spectrum of 3C 396 / 4FGL J1903.8+0531 is best fitted with a log-parabola function with parameters of α = 2.66 and β = 0.16 in the energy range of 0.2–300 GeV. The luminosity of 3C 396 / 4FGL J1903.8+0531 was found to be >1035 erg s−1 at 6.2 kpc, which rules out the inverse Compton emission model. Possible scenarios of gamma-ray emission are hadronic emission and bremsstrahlung processes, due to the fact that the SNR is expanding into dense MCs in the western and northern regions of the SNR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.