Abstract

We studied the breaking strength and gliding resistance between the pulley and flexor tendon for various suture techniques. Canine flexor digitorum profundus tendons were transected and sutured using one of eight repair techniques: modified Kessler (MK); Tsuge (Tsuge); two variations of a double modified Kessler (DK1, DK2); combined modified Kessler-modified Tsuge (MKT); augmented Becker (Becker); Cruciate (Cruciate); and modified double Tsuge (DT). The force to produce a 1.5 mm gap, ultimate failure load, resistance to gap formation, and gliding resistance were measured. The force to produce a 1.5 mm gap and the ultimate breaking force were higher with the DK1, DK2, MKT, Becker, Cruciate, and DT repairs than they were with the MK and Tsuge repair, while the gliding resistance of the Becker was higher than that of the MK, DK1, DK2, MKT. Cruciate, and UT repairs. In addition to confirming that repair strength increases as the number of strands crossing the repair increases, we also found that these stronger repairs need not produce higher gliding resistance than less robust repairs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.