Abstract

Although viral gene transfer is efficient in achieving transgene expression for tissue engineering, drawbacks of virus dissemination, toxicity and transient gene expression due to immune response have hindered its widespread application. Many tissue engineering studies thus opt to genetically engineer cells in vitro prior to their introduction in vivo. However, it would be attractive to obviate the need for in vitro manipulation by transducing the infiltrating progenitor cells in situ. This study introduces the fabrication of a virus-encapsulated electrospun fibrous scaffold to achieve sustained and localized transduction. Adenovirus encoding the gene for green fluorescent protein was efficiently encapsulated into the core of poly(ε-caprolactone) fibers through co-axial electrospinning and was subsequently released via a porogen-mediated process. HEK 293 cells seeded on the scaffolds expressed high level of transgene expression over a month, while cells inoculated by scaffold supernatant showed only transient expression for a week. RAW 264.7 cells cultured on the virus-encapsulated fibers produced a lower level of IL-1 β, TNF-α and IFN-α, suggesting that the activation of macrophage cells by the viral vector was reduced when encapsulated in the core-shell PCL fibers. In demonstrating sustained and localized cell transduction, this study presents an attractive alternative mode of applying viral gene transfer for regenerative medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.