Abstract
In this study, we developed a mesoporous silica nanoparticles - mRNA (MSN-mRNA) subcutaneous delivery system composed of naked mRNA and a subcutaneous depot of imidazolo-oxindole RNA-activated protein kinase (PKR) inhibitor C16. We show that C16 treatment during mRNA transfection is a potent immune evasion approach that non-linearly enhances translation of unmodified mRNA in both mouse fibroblasts and dendritic cells in vitro exceeding that of nucleoside-modified mRNA. Notably, C16 further enhances translation of nucleoside-modified mRNA and HPLC purified mRNA. However, translation enhancement is dependent on and potentiated by C16′s continuous presence. C16 mediated translation enhancement is extended in vivo by employing MSN as an interface to sustain-release C16. Subcutaneously administered MSN-mRNA significantly enhanced in vivo translation and expression kinetics of naked mRNA in unmodified, nucleoside-modified, and HPLC purified formats. We applied a MSN-mRNA vaccine formulation composed of naked mRNA encoding ovalbumin and granulocyte macrophage colony stimulating factor, and C16@MSNs on a xenograft E.G7-OVA prophylactic tumor model, resulting in very potent tumor inhibition. The MSN-mRNA delivery system bears great translational potential in mRNA therapeutics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Pharmaceutics and Biopharmaceutics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.