Abstract
Traumatic brain injury (TBI) triggers inflammatory response and glial scarring, thus substantially hindering brain tissue repair. This process is exacerbated by the accumulation of activated immunocytes at the injury site, which contributes to scar formation and impedes tissue repair. In this study, a mussel-inspired nitric oxide-release microreservoir (MINOR) that combines the features of reactive oxygen species (ROS) scavengers and sustained NO release to promote angiogenesis and neurogenesis is developed for TBI therapy. The injectable MINOR fabricated using a microfluidic device exhibits excellent monodispersity and gel-like self-healing properties, thus allowing the maintenance of its structural integrity and functionality upon injection. Furthermore, polydopamine in the MINOR enhances cell adhesion, significantly reduces ROS levels, and suppresses inflammation. Moreover, a nitric oxide (NO) donor embedded into the MINOR enables the sustained release of NO, thus facilitating angiogenesis and mitigating inflammatory responses. By harnessing these synergistic effects, the biocompatible MINOR demonstrates remarkable efficacy in enhancing recovery in mice. These findings benefit future therapeutic interventions for patients with TBI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.