Abstract
Transarterial chemoembolization (TACE) is the standard of care for patients with advanced hepatocellular carcinoma (HCC), but facing the problem of low therapeutic effect. Conventional TACE formulations contain Lipiodol (LP) and chemotherapeutic agents characterized by burst release due to the unstable emulsion. Herein, we developed a novel TACE system by inducing bovine serum albumin (BSA) loaded hypoxia-activated prodrug (tirapazamine, TPZ) nanoparticle (BSATPZ) for sustained drug release. In the rabbit VX2 liver cancer model, TACE treatment induced a long-term hypoxic tumor microenvironment as demonstrated by increased expression of HIF-1α in the tumor. BSATPZ nanoparticles combined with LP greatly enhanced the anti-tumor effects of the TACE treatment. Compared to conventional TACE treatment, BSATPZ nanoparticle-based TACE therapy more significantly delayed tumor progression and inhibited the metastases in the lungs. The effects could be partially mediated by the rebuilt immune responses, as BSATPZ nanoparticle can served as an immunogenic cell death (ICD) inducer. Collectively, our results suggest that BSATPZ nanoparticle-based TACE therapy could be a promising strategy to improve clinical outcomes for patients with HCC and provide a preclinical rationale for evaluating TPZ therapy in clinical studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.